\qquad Hour \qquad
Book Website: connected.mcgraw-hill.com You should already have a username and password written down (Bingo sheet). If not, use the redemption code: 3R4X-EGN3-7KQO to register.

Gravity and Circular Motion Book Assignment

p. 159-163

1. *Reminder: Vectors have both \qquad and \qquad
2. Can you accelerate if your speed is constant? Explain!
3. Define centripetal acceleration:
4. Centripetal also is called \qquad -seeking acceleration.
5. The acceleration will be directed toward the \qquad of the circle.
units
Centripetal Acceleration $\left(a_{c}\right)=\underline{v^{2}}$
$v=$ \qquad in
r
$r=$ \qquad in \qquad
6. You are on the swings at MOA moving at constant speed in a circle. If your swing is 48.2 m from the center and has a centripetal acceleration of $4.05 \mathrm{~m} / \mathrm{s}^{2}$, what is your speed? ($13.97 \mathrm{~m} / \mathrm{s}$)

Period of revolution:

7. Define period and include the letter of its abbreviation:

Objects moving in a circle at constant speed: $\quad v=\underline{2 \pi r}$
T
8. A ball is swung from a cord with a radius of 0.58 m at a constant speed of $2.4 \mathrm{~m} / \mathrm{s}$. What is the period of the ball? (1.52 sec)

Centripetal Force (force directed toward the center of the object's circular path)

$$
\begin{array}{ll}
\mathbf{F}_{\mathrm{c}}=\mathbf{m} \times \mathbf{a}_{\mathrm{c}} & \mathrm{~F}_{\mathrm{c}}= \\
\mathrm{a}_{\mathrm{c}}=
\end{array}
$$

9. What is the centripetal force keeping Earth circling the sun? \qquad
10. A pilot is flying a small plane at $30 \mathrm{~m} / \mathrm{s}$ in a circular path with a radius of 150 m . If a force of 655 N is needed to maintain the pilot's circular motion, what is the pilot's mass? (Find a_{c} first, then mass) (109 kg)
p. 163
11. Explain why inertia, not a centrifugal force, causes you to slide to the right when you make a sharp left turn in your car.
\qquad Hour \qquad
Book Website: connected.mcgraw-hill.com You should already have a username and password written down (Bingo sheet). If not, use the redemption code: 3R4X-EGN3-7KQO to register. p. 182
12. Isaac Newton determined that the force of \qquad would act between any 2 objects in the universe and is known as the \qquad force.
13. The gravitational force depends on the \qquad of the objects and the
\qquad between them.

Newton's law of Universal Gravitation: yellow box on p. 182 and p. 184 for G

$$
\begin{array}{cll}
F_{g}=\frac{G\left(m_{1} m_{2} _\right.}{r^{2}} & G=(a \text { constant })= & \\
& m_{1}= & m_{2}=\ldots \\
& \text { in } \quad \text { Units }=\ldots
\end{array}
$$

14. All objects attract one another. Why do we not observe the attraction between 2 objects on Earth? (p. 185)

Problems: No book needed:

15. Mars has a mass of $6.4 \times 10^{23} \mathrm{~kg}$, and its moon Phobos has a mass of $9.6 \times 10^{15} \mathrm{~kg}$. If the gravitational force between them is $4.6 \times 10^{15} \mathrm{~N}$, how far apart are they? $\left(9.44 \times 10^{6} \mathrm{~m}\right)$
16. A 90 kg person stands 1.0 m from a 60 kg person. What is the gravitational force between them? $\left(3.6 \times 10^{-7} \mathrm{~N}\right)$
17. Tom is twirling his huge set of keys (1.5 kg) for the building in a circle at the end of a cord at a constant speed.
a. If the keys have a centripetal acceleration of $145 \mathrm{~m} / \mathrm{s}^{2}$ and the cord has a length of 0.34 m , what is the speed of the keys? $(7.02 \mathrm{~m} / \mathrm{s})$
b. What force is needed to maintain the circular motion? (217.5 N)
c. How long will it take to make 1 revolution using this equation: $v=\underline{2 \pi r}$
($\mathrm{T}=$ the time for one revolution) $(0.30 \mathrm{sec})$
